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1 (i) Find the general solution of the differential equation

dy

dx
+ xy = xe

1
2
x2

,

giving your answer in the form y = f(x). [4]

(ii) Find the particular solution for which y = 1 when x = 0. [2]

2 Two intersecting lines, lying in a plane p, have equations

x − 1

2
= y − 3

1
= ß − 4

−3
and

x − 1

−1
= y − 3

2
= ß − 4

4
.

(i) Obtain the equation of p in the form 2x − y + ß = 3. [3]

(ii) Plane q has equation 2x − y + ß = 21. Find the distance between p and q. [3]

3 (i) Express sin θ in terms of eiθ and e−iθ and show that

sin4
θ ≡ 1

8
(cos 4θ − 4 cos 2θ + 3). [4]

(ii) Hence find the exact value of ã
1
6

π

0

sin4
θ dθ. [4]

4 The cube roots of 1 are denoted by 1, ω and ω
2, where the imaginary part of ω is positive.

(i) Show that 1 + ω + ω
2 = 0. [2]

Im

Re
O

A

B

C

In the diagram, ABC is an equilateral triangle, labelled anticlockwise. The points A, B and C represent

the complex numbers ß
1
, ß

2
and ß

3
respectively.

(ii) State the geometrical effect of multiplication by ω and hence explain why ß
1
− ß

3
= ω(ß

3
− ß

2
).
[4]

(iii) Hence show that ß
1
+ ωß

2
+ ω

2ß
3
= 0. [2]
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5 (i) Find the general solution of the differential equation

3
d2y

dx2
+ 5

dy

dx
− 2y = −2x + 13. [7]

(ii) Find the particular solution for which y = −7
2

and
dy

dx
= 0 when x = 0. [5]

(iii) Write down the function to which y approximates when x is large and positive. [1]

6 Q is a multiplicative group of order 12.

(i) Two elements of Q are a and r. It is given that r has order 6 and that a2 = r3. Find the orders of

the elements a, a2, a3 and r2. [4]

The table below shows the number of elements of Q with each possible order.

Order of element 1 2 3 4 6

Number of elements 1 1 2 6 2

G and H are the non-cyclic groups of order 4 and 6 respectively.

(ii) Construct two tables, similar to the one above, to show the number of elements with each possible

order for the groups G and H. Hence explain why there are no non-cyclic proper subgroups

of Q. [5]

7 Three planes Π
1
, Π

2
and Π

3
have equations

r.(i + j − 2k) = 5, r.(i − j + 3k) = 6, r.(i + 5j − 12k) = 12,

respectively. Planes Π
1

and Π
2

intersect in a line l; planes Π
2

and Π
3

intersect in a line m.

(i) Show that l and m are in the same direction. [5]

(ii) Write down what you can deduce about the line of intersection of planes Π
1

and Π
3
. [1]

(iii) By considering the cartesian equations of Π
1
, Π

2
and Π

3
, or otherwise, determine whether or not

the three planes have a common line of intersection. [4]

[Question 8 is printed overleaf.]
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8 The operation ∗ is defined on the elements (x, y), where x, y ∈ >, by

(a, b) ∗ (c, d) = (ac, ad + b).
It is given that the identity element is (1, 0).

(i) Prove that ∗ is associative. [3]

(ii) Find all the elements which commute with (1, 1). [3]

(iii) It is given that the particular element (m, n) has an inverse denoted by (p, q), where

(m, n) ∗ (p, q) = (p, q) ∗ (m, n) = (1, 0).
Find (p, q) in terms of m and n. [2]

(iv) Find all self-inverse elements. [3]

(v) Give a reason why the elements (x, y), under the operation ∗, do not form a group. [1]
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1 (i) 
Integrating factor. 

21
2de e

xx x   B1 For correct IF 

 
 M1 For  

21
2

d
. their IF e .their IF

d

x
y x

x
  

21 2
2

d
e e

d

x xy x
x
   
 

 

 


21 2
2 1

2
e e (

x xy c   ) A1 For correct integration both sides 

  2 21 12
2 21 1

2 2
e e e e

 


21
2

x x xxy c
      c A1 4 For correct solution  AEF as f ( )y x  

 (ii)  M1 
 
A1 2 

For substituting (0, 1) into their GS, 
solving for c and obtaining a solution of the DE 
For correct solution  AEF 

Allow  21
2

coshy x  

(0, 1)  1
2

c     

  
2 21 1

2 21
2

e + e
x x

y
   

 
 

   6  

2 (i) M1 For using  of direction vectors [2, 1, 3] [ 1, 2, 4]  n ×  

  A1 For correct n [10, 5, 5] [2, 1, 1]k     

  A1 3 For substituting

and obtaining AG     (Verification only M0) 

 (1, 3, 4)  2 3x y z     (1, 3, 4)  

 (ii) METHOD 1 

distance =

M1 

 

For 21 – 3 OR

OR

 [1, 3, 4] [2, 1, 1] 21 .   

 ([1, 3, 4] [ , , ]) [2, 1, 1]a b c . 
[1, 3, 4] [2, 1, 1] 2121 3

OR
  .

n n
   soi 

 
OR 

([1, 3, 4] [ , , ]) [2, 1, 1]  where ( , , )
is on 

a b c a b c
q

 .

n
  

B1 For 6n soi 

 18
3 6

6
   A1 3 For correct distance  AEF 

 METHOD 2 
 on q  

 

M1 

B1 

For forming and solving an equation in t 

For 6n
[1 2 , 3 , 4 ]t t t  

 2(1 2 ) (3 ) (4 ) 21t t t        3t   
soi 

  distance 3 3 n  6 A1 For correct distance  AEF 

 METHOD 3 
As Method 2 to   on q 

 
M1* 

 
For finding point where normal meets q  3t    (7, 0, 7)

 distance from (1, 3, 4)  

2 2(0 3)  2(7 1) (7 4) 54 3 6       

M1 
(*dep) 
A1 

For finding distance from

For correct distance  AEF 

 (1, 3, 4)  

   6  

3 (i)  

B1 
z or ie  i i1

2i
sin e e     may be used throughout 

For correct expression for sin  soi 

 4 4 2 21
16

sin 4 6 4z z z z         4
M1 For expanding   (with at least 

3 terms and 1  coefficient ) 

 4i ie e 

binomial
  4 1

16
sin 2cos 4 8cos 2 6      M1 For grouping terms and using multiple angles 

   4 1
8

sin cos 4 4cos 2 3      A1 4 For answer obtained correctly  AG 

 (ii) 1
1 6
6 4 1 1

8 40 0
sin d sin 4 2sin 2 3


          

M1 

A1 
For integrating (i) to sin 4 sin 2A B C     

For correct integration 

 1 1 1
8 8 2

3 3     1
64

4 7 3     M1 
 
A1 4 

For completing integration 
and substituting limits 
For correct answer  AEF(exact) 

  8   
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4 (i) EITHER 

 = sum of roots of ( ) = 0 

M1 
A1 2 

For result shown by any correct method  AG 21  
3 1 0z  

 OR 

 1)

  3 21 ( 1)( 1) 0        
21 0 (for       

 OR    sum of G.P. 

 
3

2 1 0
1 0

1 1

        
 

  

 
shown on Argand diagram 
or explained in terms of 
vectors 

  
 OR    

  
  

 OR 

   3 32 4 1 1
3 3 2 2 2 2

1 cis cis 1 i + i 0         

 

  

 (ii) Multiplication by ω  rotation through B1 For correct interpretation of  by ω 

(allow 120° and omission of, or error in, ) 
 2

3
   

 
,  

B1 For identification of vectors soi 
(ignore direction errors) 1 3z z CA 


3 2z z BC 


 

 
 rotates througBC


h 2

3
 to direction of M1 For linking BC and CA by rotation ofCA


  2

3
 OR ω 

 Δ ABC has BC = CA, hence result A1 4  For stating equal magnitudes  AG 

 (iii) (ii)  1 2 3(1 ) 0z z z      M1 For using 21 0   in (ii) 
 21 0   2

1 2 3 0z z z     A1 2 For obtaining AG 

   8  

5 (i) Aux. equation ) M1 
For correct auxiliary equation seen 
and solution attempted 

23 5 2 ( 0m m    

  1
3

, 2m    A1 For correct roots 

 
CF A1√ For correct CF 

f.t. from m with 2 arbitrary constants 
1
3 2( ) e e

x xy A B    

 PI q  3 M1 For stating and substituting PI of correct form ( )y px   5 2( ) 2 1p px q x      

  ,   A1  A1 For correct value of p, and of q  1p  4q    

 
GS 

1
3 2( ) e e

x xy A B x    4 B1√ 7 
For GS 
f.t. from their CF+PI with 2 arbitrary constants 
in CF and none in PI 

 7
2

0,    (ii)  1
2

A B   

 
1
3 21

3
e 2 e 1 (0, 0) 6 3A B     

x xy A B    ,  

M1 
 
 
M1 

For substituting  7
2

0,   in their GS 

and obtaining an equation in A and B 
For finding ,y  substituting 

and obtaining an equation in A and B 

(0, 0)  

  M1 For solving their 2 equations in A and B 
  1

2
0,A B   A1 For correct A and B CAO 

  21
2

( ) e xy x   4 B1√ 5 For correct solution 
f.t. with their A and B in their GS 

 (iii) x large  B1√ 1 For correct equation or function 
 (allow ≈ and ) WWW 
f.t. from (ii) if valid 

 ( ) 4y x   

   13  
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6 (i) e   a has order 4, has order 2 M1 For considering powers of a 4 6a r    2a  
 

e  has order 4 A1 
A1 

For order of any one of a  correct 
For all correct 

 43 12a a     3a  , 2a , 3a

 
 has order 3 B1 4 For order of  correct  32r e    2r   2r

 (ii) G order 4 
Order of element 1 2 (4) 
Number of elements 1 3 (0)  

M1 For top line in either table 
Allow inclusion of 4 and 6 respectively 
(and other orders if 0 appears below) 

 H order 6 
Order of element 1 2 3 (6) 
Number of elements 1 3 2 (0)  

A1 
A1 

For order 4 table 
For order 6 table 

 G and H are the only non-cyclic groups of order 
which divides 12 

B1 For stating that only G and H need be 
considered  AEF 

 Q has 1 element of order 2, G and H have 3,  
so no non-cyclic subgroups in Q 

B1 5 
 

For argument completed by elements of order 2  
AG 
SR Allow equivalent arguments for B1 B1 

   9  

7 (i) M1 
A1 

For using  of direction vectors 
For correct direction 

[1, 1, 2] [1, 1, 3] ( )[1, 5, 2]     ×  

 M1 
A1 

For using  of direction vectors 
For correct direction 

[1, 1, 3] [1, 5, 12] ( )[ 3, 15, 6]    ×  

  parallel A1 5 For argument completed  AG [ 3, 15, 6] [1, 5, 2]k     
( 3k   not essential) 

 (ii) Line of intersection is parallel to l and m B1 1 For correct statement 

 (iii) METHOD 1   

 
e.g. 0z   2 5

3 6
x y z
x y z
   

   
  11 1

2 2
, ,0  on l 

M1 
A1 

For attempt to find points on 2 lines 
For a correct point on one line 

 
e.g. 0z      on m A1 For a correct point on another line 3 6

5 12 12
x y z

x y z
   

   
 7, 1, 0

 
e.g. 0z   2 5

5 12 12
x y z

x y z
   

   
  13 7

4 4
, , 0  on    3l  

 Different points  no common line of intersection A1 4 For correct answer 

 METHOD 2   

M1 
 
A1 

For finding (e.g.) y and z in terms of x 
OR eliminating one variable 
For correct expressions OR equations 

 
e.g.  11 2z x 2 5

3 6
x y z
x y z
   

   
, 27 5y x   

 LHS of eqn 3 = A1 For obtaining a contradiction from 3rd equation 
(135 25 ) (132 24 ) 3 12x x x       

  no common line of intersection A1 For correct answer 

 METHOD 3   

 LHS 2 M2 For attempt to link 3 equations 3 13 2     

 RHS  A1 For obtaining a contradiction 3 5 2 6 3 12      

  no common line of intersection A1 For correct answer 

 SR Variations on all methods may gain full credit  SR f.t. may be allowed from relevant working 

  10   
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8 (i) M1 For 3 distinct elements bracketed 
and attempt to expand 

(( , )*( , ))*( , ) ( , )*( , )a b c d e f ac ad b e f   

  A1 For correct expression ( , )ace acf ad b   

   ( , )*(( , )*( , )) ( , )*( , )a b c d e f a b ce cf d   

  A1 3 For correct expression again ( , )ace acf ad b   

 (ii) M1 For combining both ways round ( , )*(1, 1) ( , )a b a a b  , (1, 1)*( , ) ( , 1)a b a b   

 


M1 
 
A1 3 

For equating components 
(allow from incorrect pairs) 
For correct elements AEF 

1a b b     1a   

 (1, )b b  

 (iii) 



M1 
 
A1 2 

For either element on LHS 
 
For correct inverse 

( , ) ( , ) (1, 0)mp mq n OR pm pn q    

  1( , ) , n
m m

p q    

 (iv) 

OR

2( , )*( , ) ( , ) (1, 0)a b a b a ab b    

  1( , ) , b
a a

a b     

 
M1 

 
For attempt to find self-inverses 

 2 1a  , ab b   

   self-inverse elements  and B1  A1 
 3 

For For AEF (1, 0) .  ( 1, )b  (1, 0)  ( 1, )b b   

 (v)  has no inverse for any y  not a group B1 1 For stating any one element with no inverse.  
Allow 

(0, )y
0x   required, provided reference to 

inverse is made 
“Some elements have no inverse” B0 

   12  

 
 
 
 


